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Abstract. Charmonium sum rules are analyzed with the primary goal to obtain the restrictions on the
value of the dimension 4 gluon condensate. The moments Mn(Q2) of the polarization operator of the vector
charm currents are calculated and compared with the experimental data. The three-loop (α2

s ) perturbative
corrections, the contribution of the gluon condensate with αs corrections and the contribution of the
dimension 6 operator G3 are accounted. It is shown that the sum rules for the moments do not work at
Q2 = 0, where the perturbation series diverges and the G3 contribution is large. The domain in the (n,Q2)
plane where the sum rules are legitimate is found. A strong correlation of the values of gluon condensate
and MS charm quark mass is determined. The absolute limits are found to be for the gluon condensate
〈(αs/π)G2〉 = 0.009 ± 0.007 GeV4 and for the charm quark mass m̄(m̄) = 1.275 ± 0.015 GeV in the MS
scheme.

1 Introduction

It is well known that the QCD vacuum generates vari-
ous quark and gluon condensates, the vacuum expectation
values of quark and gluon fields of non-perturbative ori-
gin. Among them the gluon condensate 〈(αs/π)GaµνG

a
µν〉,

where Gaµν is the gluon field strength tensor and αs =
g2
s /(4π) is the running QCD coupling constant, plays a

special role. The existence of the gluon condensate in QCD
was first demonstrated by Shifman, Vainstein and Za-
kharov [1]. Its special role is caused by a few reasons.
First, it has the lowest dimension, d = 4, among the gluon
condensates as well as any other condensates conserving
chirality. For this reason the gluon condensate is the most
important one in the determination of the hadronic prop-
erties by QCD sum rules, if chirality conserving ampli-
tudes are considered (e.g. in the case of the meson mass
determination). Second, the value of the gluon condensate
is directly related to the vacuum energy density ε. As was
shown in [1],

ε = − π

8α2
s
β(αs)

〈αs

π
GaµνG

a
µν

〉
, (1)

where β(αs) is the Gell-Mann–Low β-function. Therefore,
the sign and magnitude of 〈(αs/π)G2〉 are very important
for the theoretical description of the QCD vacuum and for
the construction of hadron models (e.g. the bag model).
Third, in some models the numerical value of the gluon
condensate is usually used as a normalization scale which
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fixes the model parameters. For example, in the instanton
model it is required that this value is reproduced by the
model.

The numerical value of the gluon condensate〈αs

π
GaµνG

a
µν

〉
= 0.012 GeV4 (2)

has been found in [1] from charmonium sum rules. (This
value is often referred to as the standard or SVZ value.)
Later there were many attempts to determine the gluon
condensate by considering various processes within various
approaches. In some of them the value (2) (or ones by a
factor of 1.5 higher) was confirmed [2–6], in others it was
claimed that the actual value of the gluon condensate is
by a factor 2–5 higher than (2) [7–14].

From today’s point of view the calculations performed
in [1] have a serious drawback. Only the first-order (NLO)
perturbative correction was accounted in [1] and there was
taken a rather low value of αs, which was not later con-
firmed by the experimental data. (It was assumed that the
QCD parameter obeys Λ(3) ≈ 100 MeV and αs(mc) ≈ 0.2;
today’s values are essentially higher.) The contribution of
the next, dimension 6, operator G3 was neglected, so the
convergence of the operator product expansion was not
tested. In charmonium sum rules the moments Mn(Q2)
of the polarization function Π(q2), q2 = −Q2 were cal-
culated at the point Q2 = 0. It was shown in [14] that
the higher-order terms of the operator product expansion
(OPE), namely the contributions of the G3 and G4 oper-
ators, are of importance at Q2 = 0. The results of calcula-
tions of the second-order (NNLO) perturbative corrections
to Π(q2) as well as the αs correction to the gluon con-
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densate are available now. They demonstrate that both of
them as a rule are large and by no means can be neglected
in the sum rules for the moments at Q2 = 0. Finally, the
experimental data shifted significantly in comparison with
the ones used in [1].

Later the charmonium sum rules were considered at
the NLO level in [2] forQ2 > 0, and their analysis basically
confirmed the results of [1]. There are recent publications
[15–17] where the charmonium as well as bottomonium
sum rules were analyzed at Q2 = 0 with α2

s perturba-
tive corrections in order to extract the charm and bottom
quark masses in the various schemes. The condensate is
usually taken to be 0 or some another fixed value. How-
ever, the charm mass and the condensate values are en-
tangled in the sum rules. This can easily be understood
for large Q2, where the mass and condensate corrections
to the polarization operator behave as some series in neg-
ative powers of Q2, and one may eliminate the condensate
contribution to a great extent by slightly changing the
quark mass. Vice versa, different condensate values may
vary the charm quark mass within a few percents.

The condensate could be also determined from other
sum rules, which do not involve the charm quark mass,
but the accuracy usually appears to be rather low for this
purpose. In particular, a precise analysis of e+e− data
[18] leads only to rather weak restrictions on the gluon
condensate. In [19] a thorough analysis of hadronic τ -
decay structure functions was performed and the restric-
tion 〈(αs/π)G2〉 = 0.006 ± 0.012 GeV4 was found. This
value, however, does not exclude a zero value of the con-
densate.

For all these reasons a reconsideration of the problem
is necessary. The charmonium sum rules on the next level
of precision in comparison with [1] is presented below. In
Sect. 2 a general outline of the method is given and the
experimental input data for the sum rules are presented.
In Sect. 3 the method of calculation of the perturbative
part of the moments is exposed with the references to the
sources we used in the calculations. Section 4 presents the
gluon condensate contribution with αs corrections in a
form convenient for numerical evaluation of the moments
for non-zero Q2. In Sect. 5 the perturbative and operator
product expansion of the moments is considered. It is ar-
gued that the choice of the pole charm quark mass as a
mass parameter is not suitable, since in this case the terms
of higher order in αs overwhelm the lower-order ones and
the αs series are divergent. It is proposed to get rid of
this problem by using the MS mass as the mass param-
eter. In what follows the MS charm quark mass m̄(m̄)
at the renormalization point, equal to the mass itself, is
used. The formulae for the moments M̄n(Q2), expressed
through the MS mass, are given and the domain in the
(n,Q2) plane was found by direct calculation, where the
perturbative series are well convergent. In Sect. 6 the cal-
culation of m̄(m̄) and of the gluon condensate is presented.
In Sect. 7 the sensitivity of the results to the G3 operator
contribution is tested. Section 8 is devoted to a discussion
of the attempts to sum up the Coulomb-like corrections.
Section 9 contains the conclusions.

2 Experimental current correlator

Consider the two-point correlator of the vector charm cur-
rents

i
∫

dxeiqx 〈TJµ(x)Jν(0)〉 = (qµqν − gµνq
2)Π(q2),

Jµ = c̄γµc. (3)

The polarization function Π(q2) can be reconstructed by
its imaginary part with the help of the dispersion relation

Rc(s) = 4πImΠ(s+ i0), Π(q2) =
q2

4π2

∫ ∞

4m2

Rc(s)ds
s(s− q2)

.

(4)
We shall use the notation Rc, not to be confused with the
frequently used notation R for the imaginary part of the
electromagnetic current correlator, R(s) =

∑
f 3Q2

fRf (s);
we have the normalization Rc(∞) = 1 in the parton
model. In the narrow-width approximation Rc(s) can be
represented as the sum of the resonance δ-functions:

Rc(s) =
3π

Q2
cα

2
em(s)

∑
ψ

mψΓψ→eeδ(s−m2
ψ), (5)

where Qc = 2/3 is the electric charge of the c quark, and
αem(s) is the running electromagnetic coupling:

αem(s) =
α(0)

1 −∆α(s)
, (6)

∆α(s) = −4πα(0)Πem(−s) = ∆αlep(s) +∆αhad(s).

Here α(0) = 1/137.04 is the fine structure constant,
Πem(s) is the correlator of the electromagnetic currents
Jem
µ =

∑
iQiψ̄iγµψi defined in the same way as (3). As

usual, the leptonic contribution to Πem(s) is found by the
perturbation theory, while the hadronic contribution has
to be determined by a numerical integration of the ex-
perimental e+e− (or τ -decay) data. Since αem(s) weakly
changes from one resonance to another, we fix it at s =
m2
J/ψ from now on:

∆αlep(m2
J/ψ) = 0.016, ∆αhad(m2

J/ψ) = 0.009,

αem(m2
J/ψ) = 1/133.6.

There are six vector charmonium states with JPC =
1−− [20]: see Table 1.

The first two resonances, J/ψ and ψ(2S), are suffi-
ciently narrow and their contribution to Rc(s) can be well
parameterized by the δ-functions (5).

But the next resonances, especially the last three ones,
are rather wide and the narrow-width approximation for
them could be inaccurate. Here it is better to use Rc(s),
as extracted from the e+e− → hadrons branching ratio
R(s) =

∑
f 3Q2

fRf (s), which is measured experimentally
in a wide range of s. Precise data on R(s) in the region
of high charmonium states were obtained recently by the
BES collaboration [21]. In order to extract Rc(s) from
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Fig. 1. Rc(s) in the region of high resonances, determined
from BES data [21]

Table 1. Six vector charmonium states with JPC = 1−−

Notation mass, MeV full width, MeV Γψ→ee, keV

J/ψ(1S) 3096.87 ± 0.04 0.087 ± 0.005 5.26 ± 0.37
ψ(2S) 3685.96 ± 0.09 0.300 ± 0.025 2.19 ± 0.15
ψ(3770) 3769.9 ± 2.5 23.6 ± 2.7 0.26 ± 0.04
ψ(4040) 4040 ± 10 52 ± 10 0.75 ± 0.15
ψ(4160) 4159 ± 20 78 ± 20 0.77 ± 0.23
ψ(4415) 4415 ± 6 43 ± 15 0.47 ± 0.10

these data, one has to subtract the contribution of the
light quarks from R(s). We suppose that it is well de-
scribed by the perturbative QCD, which gives 2.16. The
result for Rc(s) is shown in Fig. 1. Above the last reso-
nance Rc(s) is getting close to 1, the parton model pre-
diction.

Now we summarize the following experimental input
for Rc(s), which will be used in our calculations:

s < s1 = (3.7 GeV)2 : δ-functions from J/ψ and
ψ(2S) according to (5),

s1 < s < s2 = (4.6 GeV)2 : BES data, see Fig. 1,
s2 < s : continuum, Rc(s) = 1.

(7)
One could include the αs correction in the continuum re-
gion, but this will not be essential in what follows.

In order to suppress the contribution of the high energy
states, one considers the derivatives of the polarization
function in the euclidean region q2 = −Q2 < 0, the so-
called moments:

Mn(Q2) ≡ 4π2

n!

(
− d

dQ2

)n
Π(−Q2) =

∫ ∞

0

Rc(s)ds
(s+Q2)n+1 .

(8)
The experimental values are calculated according to (7):

Mn(Q2) =
27π
4α2

em

2∑
ψ=1

mψΓψ→ee

(m2
ψ +Q2)n+1

+
∫ s2

s1

Rc(s)ds
(s+Q2)n+1 +

1
n(s2 +Q2)n

. (9)

The squared error of the moments (9) is computed as the
sum of the squared errors of each term.

The lowest state J/ψ gives a maximal contribution to
the moments due to the largest width ΓJ/ψ→ee, which it-
self has the error 7%. This error can be eliminated to a
great extent, if one considers the ratio of two moments,
which in the general case can be written in the following
form:

r(n1, n2;Q2) ≡ Mn1(Q
2)

Mn2(Q2)
= (m2

J/ψ +Q2)n2−n1
1 +D1

1 +D2
,

(10)
where D1,2 denotes the higher state contribution to the
moments (9) divided by the J/ψ contribution. Then the
error of this ratio is calculated by the usual rules:

(
∆r

r

)2

=
2∑
j=1

(
∆Dj

1 +Dj

)2

, (11)

where the mass errors are neglected. If D1,2 � 1, the
relative error of the ratio is much smaller than the relative
errors of the moments itself. This fact has been utilized in
many papers on charmonium sum rules and will be used
here.

In our calculations we shall always use a sufficiently
high n (n ≥ 8), so that the last term in (9), which comes
from the continuum, is small compared to the resonance
contribution and the uncertainty introduced by this term
is negligible. Moreover, the difference between the narrow-
width approximation for the high resonances (above
ψ(2S)) as given by (5), and their representation by (7)
is small and well below the quoted errors.

3 Theoretical R(s)

At first one defines the running QCD coupling a(µ2) ≡
αs(µ2)/π as a solution of the renormalization group equa-
tion:

∫ a(µ2)

a(µ2
0)

da
β(a)

= − ln
µ2

µ2
0
, β(a) =

∑
n≥0

βna
n+2. (12)

Then the functions R(n)(s, µ2) are defined as the coeffi-
cients in the αs expansion:

Rc(s) =
∑
n≥0

R(n)(s, µ2)an(µ2). (13)

Since Rc(s) is the physical quantity, it does not depend
on the scale µ2, although each term in (13) may be µ2

dependent.
It is easier to represent the results in terms of the pole

quark mass m and the velocity v = (1 − 4m2/s)1/2. The
first two terms in the expansion (13) do not depend on µ2.
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The leading term R(0) was calculated in [22], the next-to-
leading R(1) in [23]:

R(0) =
v

2
(3 − v2),

R(1) =
v

2
(5 − 3v2) + 2v(3 − v2)

(
ln

1 − v2

4
− 4

3
ln v
)

+
v4

3
ln

1 + v

1 − v
+

4
3
(3 − v2)(1 + v2)

×
[
2Li2

(
1 − v

1 + v

)
+ Li2

(
−1 − v

1 + v

)

+
(

3
2

ln
1 + v

2
− ln v +

11
16

)
ln

1 + v

1 − v

]
, (14)

where Li2(x) =
∑∞
n=1 x

n/n2 is the dilogarithm function.
The function R(2) is usually decomposed into four gauge
invariant terms:

R(2) = C2
FR

(2)
A + CACFR

(2)
NA + CFTnlR

(2)
l + CFTR

(2)
F ,
(15)

where CA = 3, CF = 4/3, T = 1/2 are group factors,
and nl = nf − 1 is the number of light quarks. The func-
tion R

(2)
l comes from the diagram with two quark loops:

one loop with massive quark, which couples to the vector
currents, and another loop with massless quark (the so-
called double bubble diagram). It was originally found in
[24] and in our normalization takes the form

R
(2)
l =

(
−1

4
ln
µ2

4s
− 5

12

)
R(1) + δ(2), (16)

where the function δ(2) is given by (B.3) in [25]. The func-
tion R

(2)
F comes from the similar double bubble diagram

with equal quark masses and has the form [26]

R
(2)
F = ρV + ρR − 1

4
R(1) ln

µ2

m2 , (17)

where ρV is given by (12) in [26]. The function ρR comes
from the four-particle cut and vanishes for s < 16m2. It is
represented as the double integral (13) in [26] which can
be computed numerically. However, for s > 16m2 the total
function R(2)

F can be well approximated by its high energy
asymptotic:

R
(2)
F = −1

4
R(1) ln

µ2

s
+ζ3−11

8
−13

2
m2

s
+O

(
m4/s2

)
. (18)

In numerical calculations we take all the terms up to
m12/s6, extracted from [27]. The functions R(2)

A and R(2)
NA

are generated by the diagrams with a single quark loop
and various gluon exchanges, R(2)

A is an abelian part while
R

(2)
NA contains purely non-abelian contributions. They are

not known analytically. We will use the approximations,
given by (65) and (66) in [25] (divided by 3 in our conven-
tions) which reproduce all known asymptotics and Pade
approximations with a high accuracy.

4 Condensate contribution

The contribution of the dimension 4 gluon condensate
〈aG2〉 ≡ 〈(αs/π)GaµνG

a
µν〉 to the polarization function of

massive quarks has the form

Π(G)(−Q2) =

〈
aG2

〉
(4m2)2

[
f (0)(z) + af (1)(z)

]
,

where

z =
−Q2

4m2 ,

The leading-order function was found in [1]:

f (0)(z) = − 1
12z4v4

[
3
8

2z − 1
zv

ln
v − 1
v + 1

+ z2 − z +
3
4

]
,

(19)
where v = (1 − 1/z)1/2. For this function the following
dispersion-like relation can be written:

f (0)(z) = − 1
12

∫ ∞

1

dz′

z′3v′

[
3
4

1
(z′ − z)2

+
z′

(z′ − z)3

]
.

(20)
This representation is convenient for an evaluation of the
various transformations of the polarization function Π(s),
in particular, the moments.

The next-to-leading order function f (1) was explicitly
found in [12]. One could differentiate it n times to obtain
the moments for arbitrary Q2. However, we prefer to con-
struct the dispersion integral similar to (20). The function
f (1)(z) has a cut from z = 1 to ∞ and behaves as v−6 at
z → 1. Integrating f (1)(z′)/(z′−z) by z′ along the contour
around the cut, one obtains the following representation:

f (1)(z) =
1
π

∫ ∞

1+ε

Imf (1)(z′ + i0)
z′ − z

dz′ +
3∑
i=1

π2fi
(1 − z)i

− 65
1152

ε−3/2

1 − z
+
[
8633
6912

+
17
36

ln (8ε)
]
ε−1/2

1 − z

+
65
384

ε−1/2

(1 − z)2
, (21)

where ε → 0 and

f1 = − 17
384

, f2 = − 413
6912

, f3 = − 197
2304

. (22)

The imaginary part is

Imf (1)(z + i0) =
π

96z5v5

[
PV2 (z) +

PV3 (z)
zv

ln
1 − v

1 + v

+ PV4 (z)(1 − z)
(

2 ln v +
3
2

ln (4z)
)]

, (23)

where the polynomials PVi (z) are given in Table 1 of [12].
It behaves as v−5 at z → 1, so the integral in (21) is
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divergent in the limit ε → 0. We decompose it into three
parts:

1
π

Imf (1)(z + i0) = F1(z) + F ′
2(z) +

1
2
F ′′

3 (z), (24)

in such way that each function Fi(z) behaves as v−1 at
z → 1 and has the appropriate asymptotic at z → ∞. In
particular we choose

F1(z) =
1

96z4v

[
1627
36

+
893
9
z − 98

3
z2 + 368z3

+
(

89
6

− 22z − 140
3
z2

+
3208

3
z3 − 3232z4 + 2208z5

)
1
zv

ln
1 − v

1 + v

+
(

68z +
1688

9
z2 − 4256

3
z3 + 1472z4

)

×
(

2 ln v +
3
2

ln (4z)
)]

,

F2(z) =
1

96z4v

[
−23

4
+

559
18

z +
272
3
z2

+
(

−197
8

+
947
72

z

)
1
zv

ln
1 − v

1 + v

+
136
3
z2
(

2 ln v +
3
2

ln (4z)
)]

,

F3(z) =
1

96z3v

[
−67

6
− 197

12zv
ln

1 − v

1 + v

]
. (25)

Then one may integrate (21) by parts twice and all terms
singular in ε cancel. Eventually we obtain the following
representation for the function f (1):

f (1)(z) =
3∑
i=1

[
π2fi

(1 − z)i
+
∫ ∞

1

Fi(z′)
(z′ − z)i

dz′
]
. (26)

It will be used to compute the moments numerically.

5 Moments in the MS scheme

For definiteness let us choose the scale µ2 = m2 in (13)
and write down the αs expansion of the moments (8):

Mn(Q2) =
∑
k≥0

M (k)
n (Q2)ak(m2)

+
〈αs

π
G2
〉∑
k≥0

M (G,k)
n (Q2)ak(m2). (27)

The perturbative coefficient functions are

M (k)
n (Q2) =

∫ ∞

4m2

R
(k)
n (s,m2)ds

(s+Q2)n+1 . (28)

The leading order can be expressed via the Gauss hyper-
geometric function:

M (0)
n (Q2) =

1
(4m2)n

3
√
π

4
(n+ 1)Γ (n)
Γ (n+ 5/2)

× 2F1

(
n, n+ 2
n+ 5/2

∣∣∣∣− Q2

4m2

)
. (29)

The higher-order functions M (1) and M (2) are computed
numerically by (28). (Notice that the analytical expression
for M (1)

n (0) has been found in [15] and the first seven
moments M (2)

n (0) can be determined from the low energy
expansion of the polarization function Π(s) available in
[25].)

The leading-order contribution of the gluon condensate
is easily obtained from (20):

M (G,0)
n (Q2) = − π2

(4m2)n+2

√
π

6
(n+ 1)Γ (n+ 4)
Γ (n+ 7/2)

× 2F1

(
n+ 2, n+ 4
n+ 7/2

∣∣∣∣− Q2

4m2

)
. (30)

The next-to-leading condensate correction can be com-
puted numerically with the help of the integral represen-
tation, obtained from (26):

M (G,1)
n (Q2) =

4π2

(4m2)n+2 (31)

×
3∑
i=1

Γ (n+ i)
Γ (n+ 1)Γ (i)

[
π2fi

(1 + y)n+i +
∫ ∞

1

Fi(z)
(z + y)n+i dz

]
,

where y = Q2/(4m2), and the constants fi and the func-
tions Fi(z) are given in (22) and (25).

The pole quark mass m is the most natural choice,
since it is the physical invariant. However in the pole
scheme the perturbative corrections to the moments are
huge. For instance, at the typical point, which will be used
later in our analysis, one gets

n = 10, Q2 = 4m2 :
M (1)

M (0) = 13.836, (32)

M (2)

M (0) = 193.33,
M (G,1)

M (G,0) = 13.791.

Since in the domain of interest a ∼ 0.1, this is an indi-
cation that the series (27) is divergent. The situation is
even worse for Q2 = 0 (see [15]). It is almost impossible
to choose an informative region in the (n,Q2) plane where
the perturbative corrections in the pole mass scheme are
tolerable and the continuum as well as the 〈G3〉 contribu-
tions are suppressed enough on the other hand.

The traditional solution to this problem is the mass
redefinition. In particular, in the most popular MS scheme
the mass corrections are known to be significantly smaller.
In MS conventions the mass m̄ depends on the scale µ2

according to the RG equation:

m̄(µ2) = m̄(µ2
0) exp

(∫ a(µ2)

a(µ2
0)

γm(a)
β(a)

da

)
,
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γm(a) =
∑
n≥0

γna
n+1, (33)

where γm is the mass anomalous dimension. In what fol-
lows we shall choose the most natural mass scale µ2 = m̄2

and will denote m̄(m̄2) simply by m̄.
There is a perturbative relation between the pole mass

m and the MS one m̄:

m2

m̄2 = 1 +
∑
n≥1

Kna
n(m̄2). (34)

The two-loop factor was found, in particular, in [28], while
the three-loop factor was recently calculated in [29]:

K1 =
8
3
,

K2 = 28.6646 − 2.0828nl = 22.4162, (35)
K3 = 417.039 − 56.0871nl + 1.3054n2

l = 260.526.

We put nl = 3 in the last column. The series (34) also
looks divergent at the charm scale. (Notice, that the au-
thors of [1] used another mass convention, although nu-
merically close to MS scheme at the NLO level: the coef-
ficient K1 was equal to 4 ln 2 there.)

Nevertheless let us assume for a moment that αs is
small; take advantage of (34) and (35) and express the
moments (8) in terms of the mass m̄:

Mn(Q2) =
∑
k≥0

M̄ (k)
n (Q2)ak(m̄2)

+
〈αs

π
G2
〉∑
k≥0

M̄ (G,k)
n (Q2)ak(m̄2). (36)

As follows from the definition (8) and the dimensional
consideration

M̄ (0)
n (Q2) = M (0)

n ,

M̄ (1)
n (Q2) = M (1)

n −K1(n− d/2)M (0)
n

+ K1(n+ 1)Q2M
(0)
n+1,

M̄ (2)
n (Q2) = M (2)

n −K1(n− d/2)M (1)
n

+ K1(n+ 1)Q2M
(1)
n+1

+ (n− d/2)
[
K2

1

2
(n+ 1 − d/2) −K2

]
M (0)
n

+ (n+ 1)
[
K2 −K2

1 (n+ 1 − d/2)
]
Q2M

(0)
n+1

+
K2

1

2
(n+ 1)(n+ 2)Q4M

(0)
n+2,

M̄ (G,0)
n (Q2) = M (G,0)

n ,

M̄ (G,1)
n (Q2) = M (G,1)

n −K1(n+ 2 − d/2)M (G,0)
n

+ K1(n+ 1)Q2M
(G,0)
n+1 , (37)

where d is the dimension of the polarization function
Π(Q2) (d = 0 for vector currents). All M (i)

n in the r.h.s.
are computed with the MS mass m̄.

The moment corrections M̄ (k) are much smaller than
M (k) in the pole scheme. In particular, at the same point,
which was considered in (32), we have now

n = 10, Q2 = 4m̄2 :
M̄ (1)

M̄ (0) = 0.045,
M̄ (2)

M̄ (0) = 1.136,

M̄ (G,1)

M̄ (G,0) = −1.673. (38)

This smallness of the corrections as compared to the pole
scheme is observed for almost all n and Q2. The ratios
M̄

(1)
n /M̄

(0)
n and M̄

(2)
n /M̄

(0)
n are shown in Fig. 2 and the

ratio M̄
(G,1)
n /M̄

(G,0)
n in Fig. 3 for n = 0 . . . 20 and Q2/

(4m̄2) = −1 . . . 3. The perturbative expansion in the MS
scheme obviously does not work in the area of high n and
low Q2, marked with dark. (The detailed data are pre-
sented in Tables 2,3,4 in the appendix.)

Now we can argue why the expression (37) for the
moments is legitimate, despite the series (34), relating
the pole mass m and MS mass m̄, being divergent at
the coupling αs taken on the charm mass scale. If αs is
small enough, (37) is correct. In this case the same val-
ues of M̄n can be obtained by the procedure, when the
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MS mass renormalization is performed directly in the di-
agrams, wholly without the concept of the pole mass. If
the pole mass concept is not used, the relations (34) and
(35) are irrelevant. These relations demonstrate only that
the pole mass is an ill defined object in the case of charm.
The check of self-consistency of the moments M (k)

n is the
convergence of the series (36).

If one takes the QCD coupling at some other scale
αs(µ2), the function M (2) must be replaced by

a(m̄2) → a(µ2), (39)

M̄ (2)
n (Q2) → M̄ (2)

n (Q2) + M̄ (1)
n (Q2)β0 ln

µ2

m̄2 ,

so that the series (36) is µ2-independent at the order α2
s .

6 Determination of the charm quark mass
and the gluon condensate from the data

The theoretical moments depend on three parameters:
charm quark mass, QCD coupling constant and gluon con-
densate. The QCD coupling αs is a universal quantity and
can be taken from other experiments. In particular, as a
boundary condition in the RG equation (12) we put

αs(m2
τ ) = 0.330 ± 0.025, mτ = 1.777 GeV, (40)

found from hadronic τ -decay analysis [19] at the τ mass
in agreement with other data [20].

Another question is the choice of the scale µ2, at which
αs should be taken. Since the higher-order perturbative
corrections are not known, the moments Mn(Q2) will de-
pend on this scale. In the massless limit the most natural
choice is µ2 = Q2. On the other hand for massive quarks
and Q2 = 0 the scale is usually taken µ2 ∼ m2. So we
choose the interpolation formula

µ2 = Q2 + m̄2. (41)

At this scale αs is smaller than at µ2 = m̄2 for the price of
a larger M̄ (2)

n according to (39). (Notice that in the tables

in the appendix as well as in Fig. 2 the ratio M̄ (2)/M̄ (0) is
given at the scale µ2 = m̄2.) Sometimes we will vary the
coefficient before m̄2 of (41) to test the dependence of the
results on the scale.

The sum rules for the low-order moments Mn(Q2),
n ≤ 3, cannot be used because of the large contribution of
the high excited states and continuum as well as the large
α2

s corrections (see the tables in the appendix), especially
at Q2 = 0. As Fig. 3 demonstrates, at n ≥ 4 the αs correc-
tion to the gluon condensate is large at Q2 = 0. The 〈G3〉
condensate contribution is also large (see below), which
demonstrates that the operator product expansion is di-
vergent here. For these reasons we will avoid using the
sum rules at small Q2.

As Fig. 2 shows, the first correction to the moments
M̄

(1)
n (Q2) vanishes along the diagonal line, approximately

parameterized by the equation Q2/(4m̄2) = n/5 − 1. The
second-order correction M̄ (2) and the correction to the
condensate contribution M̄ (G,1) are also small along this
diagonal for n > 5. Now let us compare the theoretical mo-
ments with the experimental value (9) at different points
on this diagonal. If the condensate is fixed, then one can
numerically solve this equation in order to find the MS
mass. The result is shown in Fig. 4a. The values n < 5
are not reliable, since the αs correction to the condensate
exceeds −50% here.

The lines in Fig. 4a are almost horizontal if the conden-
sate is not too large. Consequently there is a correlation
between the mass and condensate and we establish the
dependence of the MS charm mass m̄ on the condensate
〈(αs/π)G2〉 found at the point n = 10, Q2 = 0.98 × 4m̄2

on this diagonal. It is plotted in Fig. 4b. The error of
the experimental moments is about 7%, arising mainly
from the uncertainty in ΓJ/ψ→ee. But, since Mn(Q2) ∼
(4m̄2 + Q2)−n, the mass error is of order 7/n%, i.e. is
much smaller. For instance, at zero condensate

m̄(m̄2) = 1.283 ± 0.007 GeV for
〈αs

π
G2
〉

= 0; (42)

the error is purely experimental. The dependence plotted
in Fig. 4b as well as the value (42) are weakly sensitive
to the particular choice of the QCD coupling αs and the
scale µ2. This is an obvious advantage of the non-zero Q2,
while the analysis at Q2 = 0 leads to a significantly higher
error [17].

It is more difficult to find the restrictions on the mass
and condensate separately. For this purpose one has to
choose the point in the (n,Q2) plane which is
(1) out of the diagonal, since no new information can be
obtained from there,
(2) not in the lower right corner (high n, low Q2), where
perturbative corrections as well as αs corrections to the
gluon condensate are large, and
(3) not in the upper left corner (low n, high Q2), where
the continuum contribution to the experimental moments
is uncontrollable. It turns out that if one considers the ra-
tio of the moments (10), the mass–condensate dependence
appears to be different in comparison to Fig. 4b. In par-
ticular, the results obtained from the ratio M10/M12 at
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from the moments (10, 4m̄2) and (15, 8m̄2), “vertical” bands obtained from the ratio of the moments M10/M12 (left), M15/M17

(right) for a few different choices of αs(µ2)

Q2 = 4m̄2 and M15/M17 at Q2 = 8m̄2 are demonstrated
in the left and right parts of Fig. 5 respectively. In the
same figures the mass-condensate dependence, obtained
from the moments M10(Q2 = 4m̄2) and M15(Q2 = 8m̄2),
is also plotted. The error bands include both the exper-
imental error of the ratio (11) and the uncertainty of αs
(40). Obviously the results, obtained outside the diagonal,
are sensitive to the choice of αs as well as µ2. The small
variation of µ2 slightly changes the acceptable region in
Fig. 5, but if one takes µ2 a few times lower, the region
expands to the left significantly.

The absolute limits of the MS charm quark mass and
the gluon condensate can be determined from Fig. 5:

m̄(m̄2) = 1.275 ± 0.015 GeV,〈αs

π
G2
〉

= 0.009 ± 0.007 GeV4. (43)

The restrictions on m̄ and the gluon condensate obtained
from other ratios of the moments agree with (43), but are

weaker (see Fig. 6, where the ratio M8/M10 is considered).
The stability intervals in the moments, i.e. the intervals
where (43) occurs within the errors were found to be n =
8–13 at Q2 = 4m̄2 and n = 12–19 at Q2 = 8m̄2.

As a check, the calculations were performed where the
α2

s terms in the MS moments were omitted as well as
the αs corrections to the gluon condensate contribution
(M̄ (2)

n = M̄
(G,1)
n = 0). At Q2 = 4m̄2 it was found that

m̄ = 1.266 GeV and 〈aG2〉 = 0.011 GeV4 from M10 and
M10/M12, while at Q2 = 8m̄2 the result m̄ = 1.263 GeV
and 〈aG2〉 = 0.015 GeV4 was obtained from M15 and
M15/M17. These values agree with (43) in the limit of
the errors. However, it is difficult to estimate the errors of
the calculation, where the α2

s terms are omitted because
of the uncertainty in the scale.

Rc(s) in (13), or the expression for the moments, are
in principle independent on the normalization scale µ2.
However, in fact, since we take into account only the first
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three terms in the αs expansion in (27), such a depen-
dence occurs. Namely, when we change the normalization
point in αs from m̄2 to µ2 = Q2 + m̄2, see (41), with the
help of (39), the values of the moments defined by (27)
are changed. As is clear from (39), the difference between
the moments Mn(Q2) at the normalization points m̄2 and
Q2 + m̄2 increases with Q2. At Q2 as used above, the
difference is moderate and, if recalculated to 〈(αs/π)G2〉,
results in an error ∆〈(αs/π)G2〉 ∼ 2 × 10−3 GeV4, much
smaller than the overall error in (43). However, going to
the higher Q2 would be dangerous. In fact, while deriv-
ing (39), we expanded the running QCD coupling a(µ2)
in a(m̄2). This expansion is valid if

aβ0 ln
Q2

m̄2 � 1. (44)

In particular for Q2/(4m̄2) = 3 the l.h.s. of this equation
is ∼ 0.5 and the neglected higher-order terms could be
significant. For this reason we avoid to use a higher Q2

than was taken.
Let us now turn the problem around and try to pre-

dict the width ΓJ/ψ→ee theoretically. In order to avoid the
wrong circle argumentation we do not use the condensate
value just obtained, but take the limitation 〈(αs/π)G2〉 =
0.006 ± 0.012 GeV4 found in [19] from the τ -decay data.
Then the mass limits m̄ = 1.28–1.33 GeV can be found
from the moment ratios exhibited above, which do not
depend on ΓJ/ψ→ee if the contributions of the higher res-
onances is approximated by a continuum (the accuracy of
such an approximation is about 3%). The substitution of
these values of m̄ into the moments gives

Γ theor
J/ψ→ee = 4.9 ± 0.8 keV, (45)

to be compared with the experimental value ΓJ/ψ→ee =
5.26 ± 0.37 keV. Such a good coincidence of the theoreti-
cal prediction and experimental data is a very impressive
demonstration of the effectiveness of the QCD sum rules.

It must be stressed that while obtaining (45) no addi-
tional input was used besides the condensate restriction
taken from [19] and the value of αs(m2

τ ).

7 Influence of the D = 6 condensate

The D = 4 gluon condensate 〈aG2〉 is the leading term
in the operator expansion series. The question arises how
the higher dimension condensate could change the results
of our analysis. There is a single D = 6 gluon condensate
〈g3G3〉. Its contribution to the polarization function (3)
can be parameterized as follows:

Π(G3)(s) =

〈
g3fabcGaµνG

b
νλG

c
λµ

〉
(4m2)3

f (G3)(z), z =
s

4m2 .

The dimensionless function f (G3)(z) has been found in
[30]:

f (G3)(z) = − 1
72π2z3 (46)

×
(

2
15

+
2
5
z + 4J2 − 31

3
J3 +

43
5
J4 − 12

5
J5

)
,

where the integrals

Jn =
∫ 1

0

dx
[1 − 4zx(1 − x)]n

can be calculated analytically. However, the integral rep-
resentation is convenient to express the result in terms of
Gauss hypergeometric function, which can be easily dif-
ferentiated in order to obtain the moments:

Mn(Q2) = M (0)
n (Q2) + . . .

+
〈
g3fabcGaµνG

b
νλG

c
λµ

〉
M (G3)
n (Q2), (47)

where

M (G3)
n (Q2) =

√
π

1080(4m2)n+3

4∑
i=2

ci
Γ (n+ i)Γ (n+ 5)
Γ (n+ 1)Γ (n+ 9/2)

× 2F1

(
n+ i, n+ 5
n+ 9/2

∣∣∣∣− Q2

4m2

)

and we have the constants c2 = 3, c3 = −7, c4 = −9. The
significance of the condensate 〈g3G3〉 is determined by the
ratio of the two terms in (47). The numerical values of this
ratio for different (n,Q2) are given in the last column of
Tables 2–4 in the appendix.

No reliable estimations of the 〈G3〉 condensate are avail-
able. There exists only the estimation based on the dilute
instanton gas model [31]:

〈
g3fabcGaµνG

b
νλG

c
λµ

〉
=

4
5

12π2

ρ2
c

〈αs

π
G2
〉
, (48)

where ρc is the effective instanton radius. The numeri-
cal value of ρc is uncertain, even in the framework of the



238 B.L. Ioffe, K.N. Zyablyuk: Gluon condensate in charmonium sum rules with three-loop corrections

1.25

1.26

1.27

1.28

1.29

1.3

-0.005 0 0.005 0.01 0.015 0.02 0.025

 G3 included,
  c=0.5 fm

n=10

10/12, Q2=4m2

15/17, Q2=8m2

Q2=4m2

Fig. 7. MS mass versus gluon condensate obtained from the
moments and ratios with account of the 〈G3〉 condensate ac-
cording to (48)

model: in [32] the value ρc = 1/3 fm = 1.5 GeV−1 was ad-
vocated, in [1] the value ρc = 1 fm = 4.5 GeV−1 was used.
In the recent paper [33], based on the sum rules sensitive
to the gluon condensate, ρc = 0.5 fm = 2.5 GeV−1 was
suggested.

The contribution of 〈g3G3〉 toMn(Q2) at a fixed n falls
rapidly with the growth of Q2. At Q2 = 0 and n ≥ 5 it
comprises about 50% or more of the gluon condensate con-
tribution at ρc = 0.5 fm. Even at Q2/(4m̄2) = 1 it is sig-
nificant: the (negative) correction to the gluon condensate
term is ∼ 10% in M10 and ∼ 30% in the ratio M10/M12.
One gets more reliable results at Q2/(4m̄2) = 2. Here
the corrections are −7% for M15 and −18% for M15/M17.
These corrections leave the charm quark mass almost un-
changed, but increase the gluon condensate and its error
(compare Figs. 5 and 7). The account of the 〈g3G3〉 con-
tribution leads to the following restriction:〈αs

π
G2
〉

= 0.011 ± 0.009 GeV4. (49)

Certainly, it relies upon the instanton gas model that
gives (48).

8 About the attempts
to sum up the Coulomb-like corrections

Sometimes when considering the heavy quarkonia sum
rules the Coulomb-like corrections are summed up [15,26,
34–37]. The basic argumentation for such a summation is
that at Q2 = 0 and high n only small quark velocities
v � 1/(n1/2) are essential and the problem becomes non-
relativistic. Thus it is possible to perform the summation
with the help of well-known formulae of non-relativistic
quantum mechanics for |ψ(0)|2 in case of a Coulomb in-
teraction (see [38]).

This method was not used here for the following rea-
sons:

(1) The basic idea of our approach is to calculate the mo-
ments of the polarization operator in QCD by applying
the perturbation theory and OPE (l.h.s. of the sum rules)
and to compare it with the r.h.s. of the sum rules, rep-
resented by the contribution of the charmonium states
(mainly by J/ψ). Therefore it is assumed that the the-
oretical side of the sum rule is dual to the experimental
one, i.e. the same domains of the coordinate and momen-
tum spaces are of importance at both sides. But the char-
monium states (particularly, J/ψ) are by no means the
Coulomb systems. A particular argument in favor of this
statement is the ratio ΓJ/ψ→ee/Γψ′→ee = 2.4. If charmo-
nia were a non-relativistic Coulomb system, Γψ→ee would
be proportional to |ψ(0)|2 ∼ 1/(nr + 1)3, and since ψ′ is
the first radial excitation with nr = 1, this ratio would be
equal to 8 (see also [38]).
(2) The heavy quark–antiquark Coulomb interaction at
large distances r > rconf ∼ 1 GeV−1 is screened by gluon
and light quark–antiquark clouds, resulting in string for-
mation. Therefore the summation of a Coulombic series
makes sense only when the Coulomb radius rCoul is below
rconf . (It must be kept in mind that higher-order terms
in a Coulombic series represent the contributions of large
distances, r � rCoul.) For charmonia we have

rCoul ≈ 2
mcCFαs

≈ 4 GeV−1.

It is clear, that the necessary condition RCoul < Rconf is
badly violated for charmonia. This means that the sum-
mation of the Coulomb series in case of charmonium would
be a wrong step.
(3) Our analysis is performed at Q2/4m̄2 ≥ 1. At large
Q2 the Coulomb corrections are suppressed in compari-
son with Q2 = 0. It is easy to estimate the characteristic
values of the quark velocities. At large n they are v ≈
((1+Q2/4m2)/n)1/2. We are working along the diagonals
of Fig. 4, well parameterized by the equation Q2/4m̄2 ≈
n/5 − 1. Here the quark velocity v ∼ 1/(51/2) ≈ 0.45 is
not small and not in the non-relativistic domain, where
the Coulomb corrections are large and legitimate.

Nevertheless, let us look to the expression of Rc, ob-
tained after summation of the Coulomb corrections in the
non-relativistic theory [39]. It reads (to go from QED to
QCD one has to replace α → CFαs, CF = 4/3):

Rc,Coul =
3
2
πCFαs

1 − e−x =
3
2
v

(
1 +

x

2
+
x2

12
− x4

720
+ . . .

)
,

(50)
where x = πCFαs/v. At v = 0.45 and αs ≈ 0.26 the
first three terms in the expansion (50), accounted in our
calculations, reproduce the exact value of Rc,Coul with ac-
curacy 1.6%. Such a deviation leads to the error of the
mass m̄ of order (1–2) × 10−3 GeV, which is completely
negligible. In order to avoid misunderstanding, it must be
mentioned that the value of RcCoul, computed by sum-
ming the Coulomb corrections in non-relativistic theory,
has not too much in common with the real physical situa-
tion. Numerically, at the chosen values of the parameters
RcCoul ≈ 1.8, while the real value (both experimental and
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in perturbative QCD) is about 1.1. The goal of the argu-
ments presented above was to demonstrate that even in
the case of a Coulombic system our approach would have
a good accuracy of calculation.

At v = 0.45 the momentum transfer from quark to
antiquark is ∆p ∼ 1 GeV. (This is the typical domain for
the QCD sum rule validity.) In coordinate space it cor-
responds to ∆rqq̄ ∼ 1 GeV−1. Comparison with potential
models [39] demonstrates that in this region the effective
potential strongly differs from the Coulombic one.
(4) A large compensation of various terms in the expres-
sion for the moments in the MS scheme (see Fig. 2) is
not achieved if only the Coulomb terms are taken into ac-
count. This means that the terms of non-Coulombic origin
are more important here than the Coulombic ones.

For all these reasons we believe that the summation of
non-relativistic Coulomb corrections is inadequate in the
problem considered: it will not improve the accuracy of
the calculations, but it would be misleading.

9 Results and discussion

The analysis of charmonium sum rules is performed within
the framework of QCD at the next level of precision in
comparison with the famous treatment of this problem by
Shifman, Vainstein and Zakharov [1]. In the perturbation
theory the terms of order α2

s were accounted as well as
αs corrections to the gluon condensate contribution, in
OPE the dimension 6 operator G3. The method of the
moments was exploited. The validity of the method was
demonstrated for the MS mass of the charm quark, but
not for the pole mass. The domain in the (n,Q2) plane
was found where the three accounted terms in the pertur-
bative series are well converging. It was shown that the
sum rules do not work at Q2 = 0, where the following
four requirements cannot be satisfied simultaneously:
(1) convergence of the perturbation series,
(2) a small αs correction to the gluon condensate contri-
bution,
(3) a small contribution of the G3 operator,
(4) a small contribution of the higher resonances and con-
tinuum.

A large Q2 allows us also to suppress the Coulomb
corrections. The most suitable values of Q2 for the sum
rules are Q2 ∼ (1–2)4m̄2 ∼ 5–15 GeV2. The values of
the charmed quark of MS and the gluon condensate were
found by comparing the theoretical moments with the
experimental ones, saturated by charmonium resonances
(plus continuum). A strong correlation of the values m̄ and
〈(αs/π)G2〉 was established. This connection only weakly
depends on αs. Taking the αs value found in [19] from the
hadronic τ -decay data,

αs(m2
τ ) = 0.330 ± 0.025, (51)

the MS charm quark mass and the gluon condesate were
determined to be

m̄(m̄2) = 1.275 ± 0.015 GeV,

〈αs

π
G2
〉

= 0.009 ± 0.007 GeV4. (52)

The error in (52) roughly comprises as 50% theoretical
(uncertainty in αs and the normalization scale) and 50%
experimental (mainly the error of the J/ψ electronic decay
width). The numbers in (52) were obtained disregarding
the contribution of the G3 operator. The account of the
G3 term, when 〈G3〉 was taken using the dilute instanton
gas model with ρc = 0.5 fm, shifts (52) to〈αs

π
G2
〉

= 0.011 ± 0.009 GeV4. (53)

The value (53) may be compared with the recently found
[19] limitation on the gluon condensate from hadronic τ -
decay data: 〈αs

π
G2
〉

= 0.006 ± 0.012 GeV4. (54)

Equations (53) and (54) are compatible and are obtained
from independent sources. So, with some courage, we can
average them and get〈αs

π
G2
〉

av
= 0.0085 ± 0.0075 GeV4. (55)

After such averaging we come back to (52).
We can formulate our final conclusion about the gluon

condensate value as follows. The values of the gluon con-
densate two times (or more) larger than the SVZ value (2)
are certainly excluded. Unfortunately our analysis does
not allow us to exclude zero values of the gluon conden-
sate. In this respect the improvement of the experimental
precision of the J/ψ → e+e− width would be helpful.
Based on the condensate limitation (54) and the value of
αs (51), the J/ψ electronic decay width ΓJ/ψ→ee was pre-
dicted theoretically:

Γ theor
J/ψ→ee = 4.9 ± 0.8 keV, (56)

to be compared with the experimental value 5.26 ±
0.37 keV. Such a good coincidence ones more demonstrates
the effectiveness of the QCD sum rule approach.
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Appendix: Numerical values of the moments

We list here the numerical values of the perturbative mo-
ments M̄ (0,1,2), the condensate contribution M̄ (G,0,1) in
the MS scheme computed by (37) and the 〈G3〉 condensate
contribution M (G3) (47) for n = 1 . . . 20 and Q2/(4m̄2) =
0, 1, 2. For dimensionful values we put 4m̄2 = 1 here, so
that the leading term M̄ (0) and the ratios M̄ (G,0)/M̄ (0),
M̄ (G3)/M̄ (0) should be divided by (4m̄2)n and (4m̄2)2,
(4m̄2)3 respectively for a particular mass m̄.
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Table 2. Moments at Q2 = 0

n M̄
(0)
n M̄

(1)
n /M̄

(0)
n M̄

(2)
n /M̄

(0)
n M̄

(G,0)
n /M̄

(0)
n M̄

(G,1)
n /M̄

(G,0)
n M̄

(G3)
n /M̄

(0)
n

1 0.8 2.394 2.384 −15.04 2.477 0.056
2 0.3429 2.427 6.11 −58.49 1.054 0.826
3 0.2032 1.917 6.115 −143.6 −0.484 4.003
4 0.1385 1.1 4.402 −283.4 −2.107 12.76
5 0.1023 0.078 2.162 −491.3 −3.798 32.21
6 7.9565 × 10−2 −1.092 0.213 −780.3 −5.545 69.81
7 6.4187 × 10−2 −2.375 −0.836 −1164. −7.337 135.9
8 5.3207 × 10−2 −3.75 −0.514 −1654. −9.17 243.9
9 4.5043 × 10−2 −5.199 1.559 −2266. −11.04 411.2

10 3.8776 × 10−2 −6.711 5.698 −3011. −12.94 659.1
11 3.3841 × 10−2 −8.277 12.17 −3903. −14.86 1014.
12 2.9872 × 10−2 −9.89 21.19 −4955. −16.81 1506.
13 2.6624 × 10−2 −11.54 32.98 −6181. −18.78 2172.
14 2.3924 × 10−2 −13.23 47.69 −7593. −20.77 3055.
15 2.1653 × 10−2 −14.96 65.49 −9204. −22.78 4204.
16 1.9719 × 10−2 −16.71 86.51 −1.103 × 104 −24.81 5673.
17 1.8058 × 10−2 −18.49 110.9 −1.308 × 104 −26.85 7526.
18 1.6617 × 10−2 −20.3 138.7 −1.537 × 104 −28.91 9834.
19 1.5359 × 10−2 −22.13 170.1 −1.791 × 104 −30.98 1.268 × 104

20 1.4252 × 10−2 −23.98 205.2 −2.072 × 104 −33.07 1.614 × 104

Table 3. Moments at Q2 = 4m̄2

n M̄
(0)
n M̄

(1)
n /M̄

(0)
n M̄

(2)
n /M̄

(0)
n M̄

(G,0)
n /M̄

(0)
n M̄

(G,1)
n /M̄

(G,0)
n M̄

(G3)
n /M̄

(0)
n

1 0.4348 2.235 −0.307 −2.816 4.532 −0.02
2 9.7902 × 10−2 2.64 4.407 −10.19 4.03 −0.058
3 2.9985 × 10−2 2.709 6.752 −23.8 3.455 −0.082
4 1.047 × 10−2 2.588 7.653 −45.32 2.825 −0.014
5 3.9365 × 10−3 2.34 7.582 −76.4 2.15 0.279
6 1.5529 × 10−3 1.999 6.85 −118.7 1.438 1.004
7 6.3364 × 10−4 1.587 5.683 −173.9 0.697 2.452
8 2.6515 × 10−4 1.118 4.253 −243.5 −0.071 5.015
9 1.1314 × 10−4 0.601 2.7 −329.4 −0.862 9.197

10 4.9032 × 10−5 0.045 1.136 −433. −1.673 15.63
11 2.1523 × 10−5 −0.546 −0.343 −556.1 −2.501 25.09
12 9.5483 × 10−6 −1.167 −1.656 −700.3 −3.346 38.5
13 4.2743 × 10−6 −1.815 −2.732 −867.3 −4.205 56.96
14 1.9283 × 10−6 −2.486 −3.508 −1059. −5.078 81.75
15 8.7574 × 10−7 −3.178 −3.93 −1276. −5.962 114.4
16 4.0007 × 10−7 −3.89 −3.948 −1521. −6.858 156.4
17 1.8372 × 10−7 −4.62 −3.518 −1795. −7.764 209.9
18 8.4756 × 10−8 −5.365 −2.599 −2101. −8.68 277.
19 3.9264 × 10−8 −6.126 −1.154 −2439. −9.605 360.
20 1.8257 × 10−8 −6.9 0.85 −2811. −10.54 461.7
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Table 4. Moments at Q2 = 8m̄2

n M̄
(0)
n M̄

(1)
n /M̄

(0)
n M̄

(2)
n /M̄

(0)
n M̄

(G,0)
n /M̄

(0)
n M̄

(G,1)
n /M̄

(G,0)
n M̄

(G3)
n /M̄

(0)
n

1 0.3005 2.073 −2.016 −1.098 5.002 −8.936 × 10−3

2 4.6172 × 10−2 2.531 2.453 −3.825 4.762 −0.03
3 9.589 × 10−3 2.734 5.208 −8.691 4.468 −0.064
4 2.2613 × 10−3 2.792 6.909 −16.2 4.131 −0.105
5 5.7274 × 10−4 2.753 7.853 −26.84 3.761 −0.14
6 1.5191 × 10−4 2.643 8.229 −41.11 3.364 −0.147
7 4.1621 × 10−5 2.478 8.167 −59.5 2.942 −0.094
8 1.1682 × 10−5 2.27 7.769 −82.51 2.501 0.066
9 3.3404 × 10−6 2.025 7.113 −110.6 2.042 0.393

10 9.6957 × 10−7 1.749 6.264 −144.3 1.568 0.963
11 2.8488 × 10−7 1.447 5.276 −184.1 1.08 1.871
12 8.4559 × 10−8 1.122 4.195 −230.4 0.579 3.233
13 2.5317 × 10−8 0.776 3.061 −283.9 0.068 5.186
14 7.6361 × 10−9 0.412 1.909 −344.8 −0.455 7.89
15 2.3181 × 10−9 0.031 0.77 −413.8 −0.986 11.53
16 7.0768 × 10−10 −0.364 −0.33 −491.3 −1.527 16.33
17 2.1713 × 10−10 −0.773 −1.365 −577.8 −2.075 22.52
18 6.6914 × 10−11 −1.195 −2.313 −673.9 −2.631 30.38
19 2.0704 × 10−11 −1.628 −3.153 −779.9 −3.194 40.21
20 6.429 × 10−12 −2.072 −3.867 −896.4 −3.764 52.36

References

1. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys.
B 147, 385 (1979); 448

2. L.J. Reinders, H.R. Rubinstein, S. Yazaki, Nucl. Phys. B
186, 109 (1981)

3. S. Narison, QCD spectral sum rules (World Scientific,
1989); Phys. Lett. B 387, 162 (1996)

4. V.A. Novikov, M.A. Shifman, A.I. Vainstein, M.B.
Voloshin, V.I. Zakharov, Nucl. Phys. B 237, 525 (1984)

5. S.I. Eidelman, L.M. Kurdadze, A.I. Vainstein, Phys. Lett
B 82, 278 (1979)

6. K.J. Miller, M.G. Olsson, Phys. Rev. D 25, 1247 (1982)
7. R.A. Bertlmann, Nucl. Phys. B 204, 387 (1982)
8. V.N. Baier, Yu.F. Pinelis, Phys. Lett. B 116, 179 (1982);

Nucl. Phys. B 229, 29 (1983)
9. G. Launer, S. Narison, R. Tarrach, Z. Phys. C 26, 433

(1984)
10. R.A. Bertlmann, C.A. Domingues, M. Loewe, M. Perrot-

tet, E. de Rafael, Z. Phys. C 39, 231 (1988)
11. P.A. Baikov, V.A. Ilyin, V.A. Smirnov, Phys. Atom. Nucl.

56, 1527 (1993)
12. D.J. Broadhurst, P.A. Baikov, V.A. Ilyin, J. Fleischer,

O.V. Tarasov, V.A. Smirnov, Phys. Lett. B 329, 103
(1994)

13. B.V. Geshkenbein, Phys. Atom. Nucl. 59, 289 (1996)
14. S.N. Nikolaev, A.V. Radyushkin, JETP Lett. 37, 526

(1982)
15. M. Jamin, A. Pich, Nucl. Phys. B 507, 334 (1997)
16. M. Eidemuller, M. Jamin, Phys. Lett. B 498, 203 (2001)
17. J.H. Kuhn, M. Steinhauser, Nucl. Phys. B 619, 588 (2001)
18. S. Eidelman, E. Jergenlehner, A.L. Kataev, O. Veretin,

Phys. Lett. B 454, 369 (1999)
19. B.V. Geshkenbein, B.L. Ioffe, K.N. Zyablyuk, Phys. Rev.

D 64, 093009 (2001)

20. K. Hagiwara et al. (Particle Data Group), Phys. Rev. D
66, 010001 (2002)

21. J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 88,
101802 (2002)

22. V.B. Berestetski, I.Ya. Pomeranchuk, Sov. Phys. JETF 29,
864 (1955)

23. J. Schwinger, Particles, sources and fields, Vol. 2 (Addison-
Wesley Publ., 1973)

24. A.H. Hoang, J.H. Kuhn, T. Teubner, Nucl. Phys. B 452,
173 (1995)

25. K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, Nucl. Phys.
B 482, 213 (1996)

26. K.G. Chetyrkin, A.H. Hoang, J.H. Kuhn, M. Steinhauser,
T. Teubner, Eur. Phys. J. C 2, 137 (1998)

27. K.G. Chetyrkin, R. Harlander, J.H. Kuhn, M. Steinhauser,
Nucl. Phys. B 503, 339 (1997)

28. N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher, Z. Phys.
C 48, 573 (1990)

29. K. Melnikov, T. van Ritbergen, Phys. Lett. B 482, 99
(2000); K.G. Chetyrkin, M. Steinhauser, Nucl. Phys. B
573, 617 (2000)

30. S.N. Nikolaev, A.V. Radyushkin, Sov. J. Nucl. Phys. 39,
91 (1984)

31. V.A. Novikov, M.A. Shifman, A.I. Vainstein, V.I. Za-
kharov, Phys. Lett. B 86, 347 (1979)

32. T. Shafer, E.V. Shuryak, Rev. Mod. Phys. 70, 323 (1998)
33. B.L. Ioffe, A.V. Samsonov, Phys. At. Nucl. 63, 1448 (2000)
34. V.A. Novikov et al., Phys. Rep. 41, 1 (1978)
35. M.B. Voloshin, Nucl. Phys. B 154, 365 (1979); Int. J. Mod.

Phys. A 10, 2865 (1995)
36. J.H. Kuhn, A.A. Penin, A.A. Pivovarov, Nucl. Phys. B

534, 356 (1998)
37. V.A. Khoze, M.A. Shifman, Sov. Phys. Usp. 26, 387 (1983)
38. L. Landau, E, Lifshitz, Quantum mechanics: Non-

relativistic theory (Pergamon Press, 1977)
39. E. Eichten et al., Phys. Rev. D 21, 203 (1980)


